

Introduction

 $H^+
ightarrow c\bar{s}$

 $H^+ o au_{ extit{had}}
u$

Conclusion

Charged Higgs boson searches in the ATLAS experiment

A. FerrariUppsala University, Sweden

On behalf of the ATLAS collaboration

SUSY'11, Fermilab, 28 August - 2 September 2011

Outline

Charged Higgs boson searches in the ATLAS experiment

1 Introduction

Introduction

 $2 H^+ \rightarrow c\bar{s}$

 $H^+ o au_{had}$

 $3 H^+ \rightarrow \tau_{had} \nu$

Conclusion

4 Conclusion

Introduction

$$H^+
ightarrow c\bar{s}$$

 $H^+
ightarrow au_{had}
u$

1 Introduction

- $2 H^+ \rightarrow c\bar{s}$
- $H^+ o au_{had}
 u$
- 4 Conclusion

Introduction

 $H^+ \rightarrow CS$

 $^+ o au_{ extit{had}}$

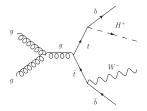
Conclusion

Theoretical background

- In the Standard Model (SM), only 1 doublet of Higgs scalars is responsible for the electroweak symmetry breaking: there is only one neutral Higgs boson h^0 .
- Other so-called 2HDM models, in particular MSSM, predict the existence of 2 complex Higgs doublets... hence 5 physical states: H⁺, H⁻, h⁰, H⁰, A⁰.
- The tree level MSSM Higgs sector is fully determined by two independent parameters only:
 - One Higgs mass: m_A or $m_{H^+} = \sqrt{m_A^2 + m_{W^+}^2}$,
 - The ratio of the vacuum expectation values of the Higgs doublets, $\tan \beta$.

In the low mass range, assuming no charged Higgs boson decay into supersymmetric particles:

- $H^+ \to \tau \nu$ dominates below the *tb* threshold,
- $H^+ \to c\bar{s}$ may have a significant branching fraction at low tan β .



Introduction

H $^+ o cs$ ${
m extsf{H}}^+ o au_{
m extsf{had}}
u$

Light charged Higgs bosons at the LHC

Production of light charged Higgs bosons at the LHC: $t\bar{t} \rightarrow b\bar{b}WH^+$ (and $t\bar{t} \rightarrow b\bar{b}H^+H^-$ to a lower extent).

Copious production of $t\bar{t}$ pairs: $\sigma_{t\bar{t}} = 164.6$ pb (NNLO).

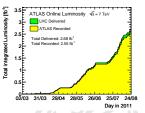
Results are presented for two processes:

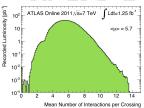
- $t\bar{t} \rightarrow b\bar{b}WH^+ \rightarrow b\bar{b}\ell\nu c\bar{s}$
- $t\bar{t} \rightarrow b\bar{b}WH^+ \rightarrow b\bar{b}qq'\tau_{had}\nu$


Introduction

 $H^+
ightarrow c\bar{s}$

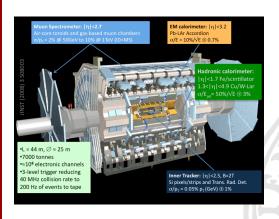
Conclusion


Data collection at the LHC in 2010 and 2011


Only data taken with all ATLAS subsystems operational are used for our analyses: 35 pb⁻¹ in 2010, and 1 fb⁻¹ in 2011 (until the June-July technical stop).

The LHC instantaneous luminosity is now above 2×10^{33} cm⁻²s⁻¹.

With high luminosity comes pile-up! $<\mu>=5.7$



Introduction

 $extcolor{black}{H^+}
ightarrow car{s} \ H^+
ightarrow au_{ extcolor{black}{had}}
u$

The ATLAS experiment

Charged Higgs boson searches require the full potential of the ATLAS detector:

- electrons.
- muons,
- jets, including b-tagging,
- τ -jets,
- missing E_T,
- triggers: lepton or $\tau + E_{\tau}^{miss}$.

Introduction

$$H^+ \rightarrow c\bar{s}$$

 $H^+ o au_{had}
u$

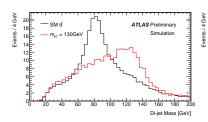
Conclusion

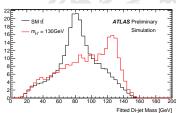
Introduction

- $2 H^+ \rightarrow c\bar{s}$
- $H^+ o au_{had}
 u$
- 4 Conclusion

Introductio

 $H^+ \rightarrow c\bar{s}$


O----


 $H^+ \rightarrow c\bar{s}$: event selection & dijet mass fitter

Cuts are applied to select $t\bar{t} \to b\bar{b}W(l\nu)H^+(c\bar{s})$, i.e. one high- p_T charged lepton, at least four jets and large E_T^{miss} .

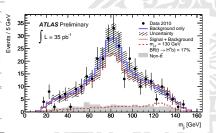
Two (non-b tagged) jets are assigned to the dijet system from H^+ (or from W in the case of SM $t\bar{t}$ events). These dijet mass distributions have a large width and it can be difficult to separate the signal from the background.

Better dijet mass resolution when reconstructing the $t\bar{t}$ semi-leptonic events with a kinematic fit.

Introduction

 $H^+ \rightarrow c\bar{s}$

 $H^+ o au_{had}$


Conclusion

$H^+ \rightarrow c\bar{s}$: results with 35 pb⁻¹

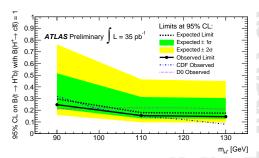
- The event yield agrees with the SM expectations,
- The background consists mostly of SM $t\bar{t}$ events (80%) and QCD was estimated from data.

The presence of $H^+ \to c\bar{s}$ would appear as a depletion of the W peak and as a second peak. None of them is observed.

Channel	Muon	Electron	
Data	193	130	
SM $t\bar{t} \rightarrow W^+bW^-\bar{b}$	156 +24	106 +16	
W/Z + jets	17±6	9±3	
Single top	7±1	5 ±1	
Diboson	0.30 ± 0.02	0.20 ±0.02	
QCD multijet	11±4	6±3	
Total Expected (SM)	191 +26	127 +17 -21	
$\mathcal{B}(t \to H^+b) = 10\%$:			
$t\bar{t} \rightarrow H^+bW^-\bar{b}$	20 +3	14 +2	
$t\bar{t} \to W^+bW^-\bar{b}$	127^{+19}_{-23}	86 +13	
Total Expected ($\mathcal{B} = 10\%$)	181 +21 -25	120 +14	

Introductio

 $H^+ \rightarrow c\bar{s}$


 $extstyle H^+
ightarrow au_{ extstyle had}
u$

$H^+ \rightarrow c\bar{s}$: upper limits on $\mathcal{B}(t \rightarrow bH^+)$

Major systematic uncertainties:

- * Jet energy scale (9-13%) & b-tagging efficiency (4-9%),
- * Top quark mass and production cross section (7-9%).

Limits are extracted by finding the branching fraction for which the confidence level in the signal hypothesis (CLs) reaches 0.05:

First LHC results on $H^+ \rightarrow c\bar{s}$, competitive with Tevatron results with only 35 pb⁻¹!

Introduction

$$H^+
ightarrow c\bar{s}$$

 $extit{H}^+
ightarrow au_{ extit{had}}
u$

Conclusion

1 Introduction

 $2 H^+ \rightarrow c\bar{s}$

- $3 H^+ \rightarrow \tau_{had} \nu$
- 4 Conclusion

Introduction

 $H^+ \rightarrow c\bar{s}$

 $H^+ o au_{had}
u$

Conclusion

$H^+ \to \tau_{had} \nu$: event selection

Search for $t\bar{t} \to b\bar{b}WH^+ \to b\bar{b}(qq')(\tau_{had}\nu)$ events:

- $E_T^{miss} + \tau$ trigger with thresholds of 35 and 29 GeV, respectively,
- 2 At least 4 jets with $p_T > 20$ GeV and $|\eta| < 2.5$,
- **3** Exactly 1 trigger-matched τ -jet with $p_T >$ 35 GeV and $|\eta| <$ 2.3,
- Veto events with electrons having E_T > 20 GeV or muons having p_T > 10 GeV,
- **1** $E_T^{miss} > 40 \text{ GeV} \text{ and } \frac{E_T^{miss}}{0.5\sqrt{\sum E_T}} > 8 \text{ GeV}^{1/2}$
- At least one b-tagged jet,
- The *qqb* candidate with the highest p_T^{qqb} must have its mass between 120 and 240 GeV.

Discriminating variable: $m_T = \sqrt{2p_T^{\tau} E_T^{miss}(1-\cos\phi_{\tau,miss})}$

Introductio

H⁺ → c̄s

 $H^+
ightarrow au_{had}
u$

Conclusion

$H^+ \to \tau_{had} \nu$: background estimation (1)

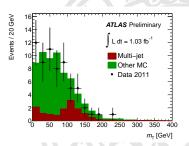
The main backgrounds to $t\bar{t} \to b\bar{b}WH^+ \to b\bar{b}(qq')(\tau_{had}\nu)$ can be determined in a data-driven way:

- Events with an electron misidentified as a τ ,
- Events with a quark misidentified as a τ ,
- Events with QCD jets,
- Events with true τ jets.

Measurement of τ misidentification probabilities in data:

- Tag-and-probe method on $Z/\gamma^* \rightarrow ee$ for electrons,
- Use inclusive γ -jet events for quarks.

After comparison with MC misidentification probabilities, scale factors are computed to correct the prediction from simulations.

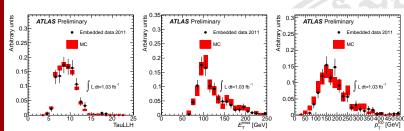

 $H^+ o car s$ $H^+ o au_{ ext{had}}
u$

$H^+ \rightarrow \tau_{had} \nu$: background estimation (2)

QCD background estimation in data:

- Define a control region by using all event selection cuts, but requesting a loose τ and no b-jet.
- The QCD shape of E_T^{miss} and m_T are assumed to be the same in the signal and control regions.
- The QCD fraction is derived from data using E_T^{miss} in the control region: $f_{QCD} = (23 \pm 10)\%$ [the non-QCD processes are simulated].

Using the m_T distribution and the QCD fraction from the control region, the QCD m_T distribution is estimated in the signal region.



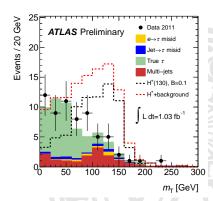
 $H^{+} \rightarrow \tau_{had} \nu$

$H^+ \rightarrow \tau_{had} \nu$: background estimation (3)

Background with true τ jets \rightarrow embedding:

- Collect a control sample of data $t\bar{t}$, single top and W+jets with a muon,
- Replace the detected muon with a simulated τ ,
- Re-apply the reconstruction with the signal event selection.
- Normalize to data in the range $m_T < 40$ GeV.

$H^+ \to \tau_{had} \nu$: results with 1 fb⁻¹

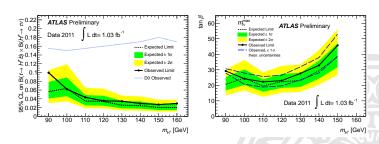

Charged Higgs boson searches in the ATLAS experiment

 $H^+ o car s$ $H^+ o au_{ ext{had}}
u$

	Events with/from					
	true τ jets	$jet \rightarrow \tau mis-id$	e ightarrow au mis-id	multi-jet	expected (sum)	data
$m_{\rm T} > 40~{\rm GeV}$	21 ± 5	2.4 ± 0.7	1.9 ± 0.2	12 ± 5	37 ± 7	43

Good agreement between estimated and observed number of events in the range $m_T > 40$ GeV.

Dashed lines \rightarrow 130 GeV H^+ with Br($t \rightarrow bH^+$)=10% and Br($H^+ \rightarrow \tau \nu$)=100%



 $H^+ \to c\bar{s}$ $H^+ \to \tau_{had} \nu$

$H^+ o au_{had} \nu$: upper limits on $\mathcal{B}(t o bH^+)$

Branching fractions $\mathcal{B}(t \to bH^+)\mathcal{B}(H^+ \to \tau\nu) > 3-10\%$ are excluded in the H^+ mass range 90-160 GeV.

Interpreted in the context of the mh-max scenario of the MSSM, $\tan \beta$ values above 22-30 can be excluded in the H^+ mass range 90-140 GeV.

Introduction

$$H^+ o c\bar{s}$$

$$H^+ o au_{had}
u$$

Conclusion

1 Introduction

$$2 H^+ \rightarrow c\bar{s}$$

$$3 H^+ \rightarrow \tau_{had} \nu$$

4 Conclusion

Introduction

 $H^+ o c\bar{s}$

 $H^+ o au_{had}$

Conclusion

Summary and outlook

Summary:

- With 35 pb⁻¹, ATLAS is competitive with the Tevatron results for the exclusion of $H^+ \rightarrow c\bar{s}$,
- With 1 fb⁻¹, ATLAS has excluded $H^+ \to \tau_{had} \nu$ in the H^+ mass range 90-160 GeV, for branching fractions $\mathcal{B}(t \to bH^+)\mathcal{B}(H^+ \to \tau \nu) > 3-10\%$,

Outlook:

With more data delivered by the LHC (> 2.5 fb⁻¹), ATLAS is likely to exclude a wider range of $\mathcal{B}(t \to bH^+)$, or make a discover of the light charged Higgs boson!

An analysis of the $H^+ \to \tau_{lep}\nu$ events in the H^+ mass range 90-160 GeV is on-going, based on advanced discriminating variables.

Eventually look for charged Higgs bosons above the *tb* threshold.

